On the unboundedness of martingale transforms

نویسنده

  • RICHARD T. DURRETT
چکیده

© Springer-Verlag, Berlin Heidelberg New York, 1985, tous droits réservés. L’accès aux archives du séminaire de probabilités (Strasbourg) (http://portail. mathdoc.fr/SemProba/) implique l’accord avec les conditions générales d’utilisation (http://www.numdam.org/legal.php). Toute utilisation commerciale ou impression systématique est constitutive d’une infraction pénale. Toute copie ou impression de ce fichier doit contenir la présente mention de copyright.

برای دانلود رایگان متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

منابع مشابه

Option Pricing in Bilateral Gamma Stock Models

In the framework of bilateral Gamma stock models we seek for adequate option pricing measures, which have an economic interpretation and allow numerical calculations of option prices. Our investigations encompass Esscher transforms, minimal entropy martingale measures, p-optimal martingale measures, bilateral Esscher transforms and the minimal martingale measure. We illustrate our theory by a n...

متن کامل

Martingale Transforms, the Dyadic Shift and the Hilbert Transform: a Sufficient Condition for Boundedness between Matrix Weighted Spaces

I fhI is the respective Haar coefficient, and σ(I) = ±1. This operator, which we denote by Tσ, is a dyadic martingale transform. The martingale transform is bounded as an operator on L(R,C). We want to find a condition on matrix weights, U and V , that implies that all martingale transforms are uniformly bounded as operators from L(R,C, V ) to L(R,C, U) where L(R,C, V ) is the space of function...

متن کامل

Risk measurement and Implied volatility under Minimal Entropy Martingale Measure for Levy process

This paper focuses on two main issues that are based on two important concepts: exponential Levy process and minimal entropy martingale measure. First, we intend to obtain   risk measurement such as value-at-risk (VaR) and conditional value-at-risk (CvaR) using Monte-Carlo methodunder minimal entropy martingale measure (MEMM) for exponential Levy process. This Martingale measure is used for the...

متن کامل

ar X iv : 1 50 1 . 05 81 8 v 5 [ m at h . C A ] 1 6 Ju l 2 01 5 AN ELEMENTARY PROOF OF THE A 2 BOUND

A martingale transform T , applied to an integrable locally supported function f, is pointwise dominated by a positive sparse operator applied to |f|, the choice of sparse operator being a function of T and f. As a corollary, one derives the sharp Ap bounds for martingale transforms, recently proved by Thiele-Treil-Volberg, as well as a number of new sharp weighted inequalities for martingale t...

متن کامل

Minimal q-entropy martingale measures for exponential time-changed Lévy processes

In this paper, we consider structure preserving measure transforms for time-changed Lévy processes. Within this class of transforms preserving the time-changed Lévy structure, we derive equivalent martingale measures minimizing relative q-entropy. Structure preservation is found to be an inherent property of minimal q-entropy martingale measures under continuous time changes, whereas it imposes...

متن کامل

ذخیره در منابع من


  با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید

عنوان ژورنال:

دوره   شماره 

صفحات  -

تاریخ انتشار 2015